

Farmer-designed trial to overcome soil constraints

The Pasture Challenge was designed to engage farmers in soil testing, soil test interpretation and improving soil health.

A "problem paddock" was sampled with a range of soil-related tests in 2022 and results presented to farmers in February 2023. Farmers arranged themselves into groups based on what they believed to be the major soil constraint, and formulated an agronomic package aimed at addressing soil constraints and improving productivity without breaking the bank.

The groups returned several times during 2023 to assess progress and review their plans.

The Challenge Site

The Challenge site is on the Abba plain south of Busselton and has a less productive sandy ridge that runs into more fertile loamy sand flat.

Initial site assessment including soil and tissue tests, root inspection and compaction assessment identified that:

- The pasture sward of consisted barley grass, capeweed, clover and some ryegrass.
- The site is severely compacted below 10cm;
- The clover appears to be nodulating poorly;
- Clover roots tend to be severely diseased;
- Soil carbon levels are 3-4% in the top 10cm and below 1% from 10-20cm;
- Soil pH in CaCl₂ is around 5 in the top 10cm and 4.2 from 10-20cm on the ridge;
- Soil test results showed sulphur is the primary limiting nutrient on the ridge, whereas potassium is the primary limitation on the flats. Both decrease with depth.
- Tissue tests on ryegrass and clover identified deficiencies in copper (ryegrass on flats only) and selenium.

Prioritising soil constraints in February 2023.

Soil pit at initial field day, February 2023.

Farmers formed into four groups and developed an agronomic package according to what they thought needed to be done. Each package was applied to three randomised strip plots (50 m x 3 m wide) that run down a gentle slope onto the flat. A Nil treatment was also included.

The four groups were:

- The Soil pH Group;
- The Plant Biology Group;
- The Rippers;
- The Meat & Potatoes Group.

The tables below outline each group's package, with their management decisions being implemented by agronomist Graham Mussell from TopSoil Agriculture.

Species sown included: Williams oats; Harpoon barley; Astound annual (tetraploid) ryegrass; Kidman perennial ryegrass; Taipan Balansa clover; Shaftal Persian clover; Pillar forage rape; and Sodbuster tillage radish.

The cover crop mix consisted of peas, ryecorn, oats, ryegrass, balansa, crimson clover, chicory, plantain.

\$/ha \$/ha Slope Flat Date Soil pH group \$212 \$212 15-Apr Limed 5t/ha 16-Apr Cultivated \$20 \$20 17-Apr Dragged & rolled \$15 \$15 4-May Sprayed 1.5 L glyphosate + 100 mls bifenthrin \$15 \$15 Sown: 10 kg Willams, 10 kg Harpoon, 10 kg Astound, 10 kg Kidman, 3 5-May \$251 \$251 kg Pillar, 1.5 kg Tiapan, 1.5 kg Shaftal 21-Jun Cut/Graze 26-Jun Reset to 6 cm with mower 75kg/ha SoA (15kgN, 18kgS); 3kg/ha ZnSO4 (0.7kgZn), 2kg/ha CuSO4 \$72 28-Jun \$132 (0.5kgCu), 4kg/ha MnSO4 (1.1kgMn); 50kg/ha MOP on flats (25kgK). Cut/Graze 3-5 Aug Reset to 6 cm with mower 7-Aug 30-Aug Topdress 55kg/ha urea (25kgN) \$44 \$44 Cut/Graze 22-Sep 28-Sep Grazing residual measured and reset to 6cm with mower 55kg/ha Urea after Sept cut \$44 \$44 20&27 Oct Cut/Graze 2-Nov Grazing residual measured **Total Cost per hectare** \$733 \$673

Date	Plant Biology	\$/ha		
15-Apr	Limed 2.5t/ha	\$106		
17-Apr	Sown: 15 kg humates, 25 kg regen blend, 2 kg pillar, 2 kg sodbuster - rolled	\$225		
20-Apr	Sprayed 450 mls/ha glyphosate (500 g/L)	\$12		
1-May	Sprayed 100 mls/ha bifenthrin RLEM ctl	\$11		
12-May	Top-dressed 50 kg/ha urea (23kgN) 20kg/ha kg kieserite (3.2kgMg, 3.6kgS) 0.6 kg/ha Selcote (6gSe)	\$66		
21-Jun	Cut/Graze			
26-Jun	Reset to 6 cm with mower			
20-Jul	Sprayed 40 L/ha Biosoil Bio+Min	\$210		
3-5 Aug	Cut/Graze			
7-Aug	Reset to 6 cm with mower			
21-Aug	Spray 250g/ha Boron (0.5kgB)	\$11		
30-Aug	Topdress 66kg/ha super (6kgP, 6.6kgS), 43kg/ha urea (20kgN), 48kg/ha Sulphate of potash (20kgK, 8kgS)	\$156		
22-Sep	Cut/Graze			
28-Sep	Grazing residual measured and reset to 6cm with mower			
29-Sep	Topdress 66kg/ha super (6kgP, 6.6kgS), 43kg/ha urea (20kgN), 48kg/ha	\$156		
	Sulphate of potash (20kgK, 8kgS)			
20&27 Oct	Cut/Graze			
2-Nov	Grazing residual measured			
	Total Cost per hectare	\$953		

		\$/ha	\$/ha
Date	Rippers	Slope	Flat
15-Apr	Limed 2.5 t/ha	\$106	\$106
16-Apr	Cultivated	\$20	\$20
17-Apr	Dragged & rolled	\$15	\$15
4-May	Sprayed 1.5 L glyphosate + 100 mls bifenthrin	\$15	\$15
5-May	Sown: 30 kg Astound, 2 kg Sodbuster, 2 kg Taipan, 2 kg Shaftal	\$178	\$178
5-May	Ryegrass seed treatment	\$36	\$36
15-Jun	Ripped to 400 mm depth	\$60	\$60
21-Jun	Cut/Graze		
26-Jun	Reset to 6 cm with mower		
28-Jun	50kg/ha urea (23kgN); 180kg/ha Super Potash 31 flats (12kgP, 22K,	\$35	\$188
	14kgS)		
3-5 Aug	Cut/Graze		
7-Aug	Reset to 6 cm with mower		
22-Sep	Cut/Graze		
28-Sep	Grazing residual measured and reset to 6cm with mower		
30-Aug	Slope 60kg/ha Super Potash 3:1 (4kgP, 7kgK); Flat 180kg/ha Super	\$121	\$223
	Potash 3:1(12kgP, 22K, 14kgS); 100kg/ha urea (46kgN)		
20&27 Oct	Cut/Graze		
2-Nov	Grazing residual measured		
	Total Cost per hectare	\$586	\$841

		\$/ha	\$/ha
Date	Meat & Tatties (M&T)	Slope	Flat
16-Apr	Cultivated	\$20	\$20
17-Apr	Dragged & rolled	\$15	\$15
4-May	Sprayed 1.5 L glyphosate + 100 mls bifenthrin	\$15	\$15
5-May	25 kg Astound, 2.5 kg Taipan, 2.5 kg Shaftal (treated)	\$151	\$151
5-May	Ryegrass seed treatment	\$30	\$30
10-May	Spray 3 kg/ha CuSO4 (0.75kgCu) on soil	\$29	\$29
21-Jun	Cut/Graze		
26-Jun	Reset to 6 cm with mower		
28-Jun	90kg/ha NS31 (31kgN, 10kgS); 750 ml/ha Tigrex + 25g Broadstrike	\$92	\$92
3-5 Aug	Cut/Graze		
7-Aug	Reset to 6 cm with mower		
7-Aug	120kg/ha NKS32 (30kgN, 15kgK, 6.6S)	\$108	\$108
30-Aug	180kg/ha grazeburst (45kgN, 7kgP, 15kgK, 11kgS)	\$180	\$180
22-Sep	Cut/Graze		
28-Sep	Grazing residual measured and reset to 6cm with mower		
29-Sep	55kg/ha Urea (25kgN) Slope; 110kg/ha urea (50kgN) Flat	44	88
20&27 Oct	Cut/Graze		
2-Nov	Grazing residual measured		
	Total Cost per hectare	\$684	\$728

The trial site. Package strips were measured in two "landforms" - Slope (rear) and Flat (foreground).

Results

Figure 1: Inputs costs for each group, divided by landform with costs categorised.

	Lines	Cood	Fautiliaau	Destisides	Distariast	Maabinamu	TOTAL
	Lime	Seed	Fertiliser	Pesticides	BIOLOGICAL	Machinery	TOTAL
pH slope	212	251	159	15	-	35	672
ph flat	212	251	220	15	-	35	733
BIO slope	106	194	389	23	241	-	953
BIO flat	106	194	389	23	241	-	953
RIP slope	106	178	156	51	-	95	586
RIP flat	106	178	411	51	-	95	841
M&T slope	ł	151	428	69	-	35	683
M&T flat	_	151	472	69	-	35	727
AVERAGE	141	194	328	40	241	55	768

 Table 5. Input Costs (\$/ha) compared to average across the entire trial.

Table 6: Amount of each element applied in fertilisers. Two figures indicate a differences in the total applied to the slope and flat landform (slope/flat). All elements were topdressed except cells shaded green (foliar application) and light red (liquid applied to soil).

	Kg/ha of Element Applied							
	RIP	рН	M&T	BIO				
Ν	63	65	85/110	63				
Ρ	16/24		7	12				
К	18/44	0/25	30	40				
S	18/28	18	17	32				
Mg				3.2				
Mn		1.1						
Cu		0.5	0.75					
Zn		0.7						
В				0.5				
Se				0.006				

Figure 3. Utilised feed on Slope (top) and Flat (bottom). Measured in September and October only.

Figure 4. Relationship between Utilised Feed and percent Dry Matter Digestibility x Dry Matter yield.

Figure 5. Penetration resistance. In general, root growth starts to be restricted above 1500 kPa and is severely restricted above 2500 kPa. Results suggest that ripping in June has removed severe compaction.

	Soil pH	Biology	M&T	Rippers	Nil
Average number of pink nodules per clover plant*	12	11	10	11	6
Visually healthy roots (% white roots estimate)*	64	38	53	55	32
Average dry root weight*	0.93	0.9	0.77	0.94	0.62
Root weight (kg/ha)10-20cm (slope only)**	1249	326	950	1882	1323

Table 7. Visual assessment of clover nodule and root health. * Measured from 20 plants per group sampled In late August. ** Taken from 27 soil cores (19 mm diameter) sampled on November 30.

Treatment	Pratylenchus (nematode) *	Didymella /Phoma pinodella **	Pythium **	Rhizoctonia **	Aphanomyces ***	Phytophthora **
Nil Slope	9	128	115	21	1	1160
M&T Slope	11	29	52	0	5	0
Ripper Slope	2	60	154	22	0	362
Biology Slope	32	43	63	10	2	575
pH Slope	20	51	34	30	0	82
Nil Flat	0	285	8	35	24	1425
M&T Flat	0	85	159	5	6	16
Ripper Flat	0	111	49	1	23	61
Biology Flat	0	321	10	197	1	111
pH Flat	0	18	16	45	0	0

Table 8. SARDI Pasture Legume (Nematode and disease) Test. * Nematodes / g soil; ** pgDNA/g

 Sample; *** kDNA copies/g Sample

Group/Landform	Depth	pH Level (CaCl2)
pH Slope	0-10	6.4
pH Slope	10-20	4.6
Biology Slope	0-10	6.0
Biology Slope	10-20	4.6
M&T Slope	0-10	5.4
M&T Slope	10-20	4.5
Nil Slope	0-10	5.8
Nil Slope	10-20	4.7
Ripper Slope	0-10	5.8
Ripper Slope	10-20	4.6
pH Flat	0-10	5.6
pH Flat	10-20	5.1
Biology Flat	0-10	5.3
Biology Flat	10-20	5.1
M&T Flat	0-10	5.1
M&T Flat	10-20	5.1
Nil Flat	0-10	5.0
Nil Flat	10-20	5.0
Ripper Flat	0-10	5.4
Ripper Flat	10-20	5.1

Table 9. Difference in soil pH between treatments. The pH group applied 5T/ha and Biology and Rippers applied 2.5T/ha. Lime was incorporated into pH and Ripper plots only.

Group/Landform	Ave ME	Ave Protein
M&T Flat	12.0	17.5
M&T Slope	11.7	20.6
Ripper Slope	11.3	19.2
Ripper Flat	11.7	18.2
pH Flat	11.7	15.7
pH Slope	11.3	17.9
Biology Flat	11.3	16.3
Biology Slope	10.6	16.9
Nil Flat	11.0	15.3
Nil Slope	10.4	17.9

Table 10. Average Metabolisable Energy (ME) and Crude Protein across three cuts in August, September and October.

This project is delivered by the South West NRM and supported by Western Beef Association Inc under the Soil Wise project, funded by the National Landcare Program – an Australian Government initiative, and supported by Healthy Estuaries WA – a State Government program.

Mational Landcare Program

Accurate soil sampling

The three key areas of PLAN, SAMPLE AND DISPATCH must be done correctly to help achieve sound soil and plant nutrition recommendations. The practices identified below should be followed.

Accurate soil sampling

plan

Clearly defining the reasons why sampling is undertaken is essential when developing a sampling plan. "What is the question your client wants answered?" Which of the following reasons are you sampling?

- » Predictive (which nutrients do I need and how much?),
- » Monitoring (have my soil nutrient concentrations changed over time?),
- » Diagnostic (explaining spatial differences in crop and pasture growth), or,
- » Compliance (meeting industry or regulatory requirements).

Once you have defined the reason for sampling, you can then decide on:

- » The area to sample, based on similarity in soil, crop and land management,
- » a sampling pattern, and
- » when to sample.
- sample
- » Select and check "fit for purpose" sampling equipment.
- » Ensure cleanliness through the sampling and handling procedure while also following work health and safety guidelines.
- » Identified sampling areas should aim to reduce variability and represent similarity in soil type, crop and land management.
- » Take at least 20 40 cores per composite sample. Smaller diameter samplers need more cores. Err on the side of taking more cores particularly as soil and crop variability increases.
- » Sample the correct depth for the crop or pasture and issues to be addressed.
- » Avoid atypical areas such as stock camps, fence lines and gateways, tree lines, previous fertilizer and lime dump sites, timber burns, headlands and poorly drained areas.
- » Record geo-coordinates of sample patterns, sampling equipment used, depth, date and field conditions.
- dispatch
- » Protect collected soil samples from heat, sun and contamination.
- » Send to the laboratory shortly after collection. Avoid mailing samples toward the end of the week. Samples may be stored briefly in a refrigerator at 3 5°C prior to dispatch.
- » Fill out all details on the sample submission forms or in a sampling app.
- » Follow relevant biosecurity requirements regarding sampling equipment and movement of samples when traveling between farms and shipping samples across state borders.

For more information, read the **Fertcare Soil Sample Guide** by scanning this QR code.

Accurate as of April 2020

Rumen8-Beef Training

Making effective supplement decisions

RUN Easy dai

Easy dairy & beef cattle diets

Want to improve your hay and silage allocation?

This workshop teachs you how to use this freely available computer software to eliminate the guesswork in allocating hay or silage to your beef herd.

Learn how to use this freely available computer program to:

- Calculate how much hay/silage stock need.
- Plan ahead! Estimate how stock will respond to feed.
- Incorporate current feed/sale yard/abattoir prices make cost effective decisions.
- Upload your own feed values and make better allocation.
- Compare various management scenarios.
- Better understand nutritional principles so to select better feed.

Strictly limited participant numbers

Participants need to bring their own laptop

Tuesday 27 February - Bridgetown Wednesday 28 February - Mandurah Directions given upon registration Time: 9 am - 4 pm <u>Cost:</u> Western Beef Financial Members: \$25

Non-members: \$ 35 Registration includes: Lunch, morning and afternoon tea and notes. Registrations will close 5 days prior to event or before, if sold-out.

Follow the link to register:

https://www.trybooking.com/CPFM

outh West

For more info, contact Western Beef EO on: Jeisane.alis@gmail.com or on 0403 327 216

Event's partners

This project received funding from the Australian Government's Future Drought Fund.

GEOGRAPHE FARMERS Protecting Geographe Bay

GRAZING MATCHER

Grazing Matcher is a group learning program for Geographe beef and sheep farmers, facilitated by experts in grazing management and animal production.

It supports producers to improve grazing, fodder and feed decisions and meets eight times over a 12-month period, at host farms across the region.

Expressions of Interest open in January 2024, with the program beginning in April.

For more information or to register, scan the QR code or contact us on 0491 069 078.

This project is jointly funded through GeoCatch, Meat and Livestock Australia's Profitable Grazing Systems initiative and Western Beef Association Inc.

Accu-Spread Demonstration Day With Australia's leading Accu-Spread Trainer, Russell Nichol

How efficient is your fertiliser spreader? Understanding your spreader pattern can result in higher productivity, save you money and protect our waterways.

GeoCatch invites you to join us to learn how to test and calibrate your spreader machinery.

Tuesday 19 March 9am to 2pm

Morning tea and lunch provided

Register with QR code Or call us on 0491 069 078 Free for Geographe Farmers

Proudly supported by

Government of Western Australia Department of Water and Environmental Regulation

This is a part of the State Government's Healthy Estuaries WA and Revitalising Geographe Waterways programs, and Soil Wise. Soil Wise is funded by the National Landcare Program Smart Farms Small Grants Initiative - an Australian Government program